top of page
Computer Vision


CNN vs ANN: Key Differences, Working Principles, and Parameter Comparison Explained
This blog explains the difference between Artificial Neural Networks (ANN) and Convolutional Neural Networks (CNN) using intuitive examples. It covers how images are processed, why CNNs scale better with fewer parameters, and how spatial features are preserved, making CNNs the preferred choice for image-based tasks.

Aryan
1 day ago
Â
Â


CNN Architecture Explained: LeNet-5 Architecture with Layer-by-Layer Breakdown
This blog explains the complete CNN architecture, starting from convolution, activation, and pooling, and then dives deep into the classic LeNet-5 architecture. It covers layer-by-layer dimensions, design choices, activation functions, and why LeNet-5 became the foundation of modern convolutional neural networks.

Aryan
2 days ago
Â
Â


Pooling in CNNs Explained: Translation Variance, Memory Efficiency, and Types of Pooling Layers
Pooling is a fundamental operation in Convolutional Neural Networks that reduces feature map size, controls memory usage, and addresses translation variance. This article explains why pooling is needed after convolution, how max pooling works step by step, pooling on volumes, and the advantages and limitations of different pooling techniques in deep learning models.

Aryan
4 days ago
Â
Â


Padding and Strides in CNNs Explained: Theory, Formulas, and Practical Intuition
Padding and strides are key concepts in convolutional neural networks that control spatial dimensions and efficiency. This article explains why padding preserves boundary information and spatial size, how zero padding works mathematically, and how stride reduces feature map resolution. With clear intuition and formulas, it shows how padding maintains detail while strided convolution enables efficient downsampling.

Aryan
6 days ago
Â
Â


How CNNs Work: A Comprehensive Guide to the Convolution Operation
Convolution is the core operation behind Convolutional Neural Networks (CNNs) that enables machines to understand images. This blog explains convolution from first principles, starting with how images are represented in memory and progressing to edge detection, feature maps, RGB convolution, and the role of multiple filters. Through intuitive explanations and practical examples, you will gain a clear understanding of how CNNs extract hierarchical features from images.

Aryan
Jan 12
Â
Â


The Complete Intuition Behind CNNs: How the Human Visual Cortex Inspired Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are inspired by how our visual cortex understands shapes, edges, and patterns. This blog explains CNNs with simple intuition, real experiments like the Hubel & Wiesel cat study, the evolution from the Neocognitron to modern deep learning models, and practical applications in computer vision.

Aryan
Dec 31, 2025
Â
Â
bottom of page